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Classical Tunneling 

A r t h u r  C o h n  I and  M a r i o  R a b i n o w i t z  1 
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A classical representation of an extended body over barriers of  height greater 
than the energy of  the incident body is shown to have many features in common 
with quan tum tunneling as the center-of-mass literally goes through the barrier. 
It is even classically possible to penetrate any finite barrier with a body of  
arbitrarily low energy if the body is sufficiently long. A distribution of  body 
lengths around the de Broglie wavelength leads to reasonable agreement with 
the quan tum transmission coefficient. 

1. INTRODUCTION 

Quantum mechanics gives the best representation known of the atomic 
and subatomic world. Classical mechanics has been assumed to be incapable 
of representing tunneling and other phenomena which have been presumed 
to be uniquely in the quantum domain. This paper is presented in the spirit 
of Gryzinski (1965, 1972, 1973a, b), who showed that a semiclassical under- 
standing of the atom, atomic collisions, and molecular forces becomes more 
reasonable as the classical model is refined. It is our goal to show that 
quantum tunneling is also amenable to properly constructed classical 
analogs. Consideration of an object having length (rather than being a point 
mass) will yield a classical explanation or analog to the concept of tunneling. 
Further consideration of a distribution of lengths will yield an analog or 
counterpart to the quantum tunneling coefficient. 

There have been a number of quasiclassical approaches to quantum 
mechanics (utilizing mechanisms such as background fluctuations) in which 
the Schr6dinger equation and the Klein-Gordon equation have been derived 
(Bohm, 1952; Aron, 1965, 1966; Nelson, 1966; Lehr and Park, 1977; Park 
et  al., 1980). Once this has been achieved, tunneling is introduced in the 
same way as in quantum mechanics with no classical insight as to how a 
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body can get through a barrier when its energy is less than that of  the barrier 
height. Bohm (1952) has some of the particles going over the barrier due 
to "violent fluctuations in the quantum mechanical potential." Others have 
particles hopping over the barrier due to thermal fluctuations. 

To our knowledge, no one has previously shown that there is a direct 
classical analog to quantum tunneling. Texts typically state: "This possibility 
of going through potential barriers--called the tunnel effect--makes it 
possible to understand in terms of quantum mechanics a number of atomic 
phenomena that are inexplicable classically" (Rojansky, 1964). This paper 
will show that an extended body can yield a classical representation of  
tunneling which has many of  the quantum mechanical features. 

Our paradigm is that of "high jumping" rather than tunneling for any 
force field. In the case of  a gravitational field, the process is like that of a 
high jumper  whose center of  gravity does not have to be raised to the height 
of the bar in order for the jumper  t o  clear the bar. The high jumper 's  body 
does not need to have an energy greater than or equal to that of the jumper 's  
weight times the barrier height, since those parts of the body already over 
the barrier drop to a lower potential energy as the body crosses the barrier. 
In essence, our view is that tunneling may also be regarded as high jumping 
of  an extended body which can clear a barrier even when its energy is less 
than the potential energy of  the barrier, if it can communicate with and be 
aided by the interaction on the other side of  the barrier. The siphon analog 
is also appropriate.  For a one-dimensional barrier, the body need not be 
flexible. In higher dimensions the extended body should be flexible, and 
we call it a " rope"  for convenience. 

2. QUANTUM MECHANICAL TUNNELING 

Let us first establish some properties of  quantum mechanical tunneling 
with which to compare the classical high-jumping results. It is noteworthy 
that the quantum mechanical representation for a point particle is essentially 
a wave equation. In terms of  the quantum wave-particle duality, tunneling 
deals only with the wave nature of  an object, as the absence of localization 
precludes dealing with the object's particle nature. A wave has distributed 
energy and hence distributed equivalent mass. In the conventional interpre- 
tation of quantum mechanics this possible inconsistency with the concept 
of  a point particle is circumvented by interpreting the wave intensity as a 
probability distribution for finding the point particle. 

The stationary solution of  tunneling is obtained by solving the 
Schr6dinger equation on the incident side of  the barrier, inside the barrier, 
and on the transmitted side of  the barrier: 

(-h2/2m)V2~ + ( V -  E)at ' = 0 (1) 
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Fig. 1. Trapezoidal potential energy barrier of height B. 
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For a one-dimensional square barrier of  width w and potential energy 
(height) B (Figure 1 with vertical sides, i .e . ,  a = b = 0), solution of  the 
SchrSdinger equation yields the transmission coefficient: 

[ ~ sinh2  wl-' 
TT*= 1-+4E(B_E)j (2) 

where/3 = [ 2 m ( B -  E)]l/2/h, E is the energy of the incident particle, and 
m is its mass. Note that quantum mechanically when E < B, the momentum 
of the particle is imaginary and its kinetic energy is negative inside the 
barrier. As w ~ 0, TT* ~ 1 for finite B, and as w ~ co, TT* ~ 0. Similarly, as 
E ~ 0, TT* ~ 0, for w ~ 0. When w = 0, TT* = 1, as E ~ 0. For any general 
barrier, the transmission coefficient TT* and amplitude T are the same in 
all directions; i.e., quantum mechanical tunneling is symmetric with respect 
to direction for a free particle (cf. Appendix B). The reflection coefficient 
has the same magnitude for all directions of  incidence on the barrier, but 
the reflection amplitudes do not all have the same phase (cf. Appendix B). 

3. CLASSICAL H I G H  J U M P I N G  

Now let us compare the above quantum tunneling results with classical 
high jumping for a nonabsorbing trapezoidal barrier of  height (maximum 
potential energy) B, top width w, and total width w + a + b as defined by 
Figure 1. This is a fairly general barrier, as, by appropriate  choice of  w, a, 
and b, a square, triangular, or line barrier can also be represented. Solutions 
may be readily obtained by conservation of energy, as shown here, though 
any of a number  of  methods may be used. 
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Equating the energy E of  the rope in the zero potential energy region 
to its potential energy when it can just barely get over the barrier, we have 
in general E = ~ pVdx, where p(x) is the appropriate  linear density (mass 
density for a gravitational field, charge density for an electric field, etc.) of  
the rope of  length L for the particular field. For the potential V = V(x) of  
Figure 1 (Vo is the maximum potential) there are three solution regimes: 
EShor  t for O<-L<-w; EMedium for w<-L<-w+a+b; and ELong for L -  
w+a+b: 

Es = pro dx (3) 

fo fo L2 L I L 

EM = -  px(Vo/a) dx+ pVodx-  px(Vo/b) dx (4) 

fo Io EL= -- px(Vo/a) dx + pVo d x -  px(Vo/b) dx (5) 
G I + G  2 

L1 and L 2 a r e  the equilibrium lengths of  the medium rope which extend 
over either side of  the top of  the barrier. In the long-rope case, G1 and G2 
are the lengths of  the rope on either side of  the barrier edges at zero potential. 

The solutions to equations (3)-(5) for the energy that the body must 
have to just clear the barrier  of  Figure 1 are 

Es = B, 0 -< L -< w (6) 

EM=B-B(L-w)2 /2 (a+b)L ,  w<-L<-w+a+b (7) 

EL = B[ (a + b )/2L + w/L], w+a+b<-L (8) 

The solutions (6)-(8) give the minimal energy E that a rope of length 
L needs to clear (penetrate) the barrier. Just as in the case of  quantum 
tunneling, it is possible to clear the barrier even if E < B. Since the solutions 
are symmetric in a and b, high jumping is the same in both directions, as 
is tunneling (cf. Appendix B). Another of  many similarities is that when 
w ~ oo, E must be - B to go over the barrier. Of  course, when 0-< L-< w ~ 0, 
E --> B for clearing the barrier. 

As can be seen from Appendix A, there are many more interesting 
correlations with quantum mechanics at even this stage of  the analysis. So 
far, we have established that it is possible for a body whose energy is less 
than its potential energy at the top of a barrier to cross (high jump)  the 
barrier, provided the body is an extended object, as an analog to quantum 
mechanics. However,  the high-jumping coefficient at this stage is only 0 or 
1. As can be seen in the next section, the analog may be taken even further. 
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4. LINK BETWEEN CLASSICAL AND QUANTUM BARRIER 
PENETRATION 

The probabilistic nature of  quantum tunneling is recovered if we assume 
that there is a distribution of rope lengths. Equations (7) and (8) should 
be interpreted as relationships giving L, the minimum rope length needed 
for barrier penetration, in terms of E, B, w, and a + b, For simplicity, consider 
the square barrier with a = b = 0; then for E < B equation (8) is operative 
and can be rewritten as 

L = Bw/E  (9) 

Only those ropes with length x-> L as given by equation (9) will go over 
the barrier, and those smaller than L will not. One would anticipate that 
in order to match the quantum solution, the de Broglie wavelength A = 
h/(2mE) 1/2, is the basic length-scale parameter for such distributions. 
Remarkably, we do find that the distributions f ( x )  of rope lengths are 
distributed about ;~. 

A normalized distribution we find, with a most probable value at ;~ 4~/3,  
as shown in Figure 2: 

f(x/;~) = (x/2;~)[1 + (xZ/4;~2)] -2 (10) 

f(x) 

L ~ X 
0 

~. ~ 4/3 
Fig. 2. Distribution of rope lengths. 
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The classical transmission coefficient Tc for this distribution is 

/ fo  ~ Tc = f (x )  dx f (x )  dx= f (x /X)  d(x/X) (11) 
/x 

The solution to equation (11) is 

Tc=[I+(L2/4;~2)]-I=[I+(B~w)2/4E(B-E)]  -' (12) 

Equation (12) agrees very well with the quantum mechanical TT* of 
equation (2) in the domain where (2mBw2)~/2< h, which one would expect 
by the correspondence principle. For any B there is close agreement between 
Tc and TT*, where ( 2 m ( B - E ) W 2 ) l / 2 <  h, and there is exact agreement in 
the limit as the positive quantity ( B - E )  goes to zero: 

T~ --- 7"T* = [1 +(mBw2/2h2)] -1 (13) 

5. CONCLUSION 

Thus, if the assumption "that  the body length is zero" is not made for 
a body incident on a barrier, then "tunneling".need no longer be considered 
a purely quantum effect, as classical "high jumping" gives analogous results. 
Based upon the analysis in this paper, it can be seen directly how it is 
possible for a body to appear  on the other side of a barrier even when its 
incident energy is less than its potential energy at the top of the barrier. 
Although the entire body goes over the barrier, its center of  mass and /o r  
center of  interaction literally go through the barrier. 

This model illustrates that a classical system can exhibit what were 
thought to be quintessential quantum mechanical properties when its energy 
is spatially distributed over a sufficiently large distance and is coherently 
coupled. In the macroscopic world, the body length may take on a large 
range of  values as an independent  variable. In the microcosm, only those 
body lengths distributed around the de Broglie wavelength lead to reason- 
able agreement with the quantum transmission coefficient. 

APPENDIX A. INTERESTING FEATURES OF ROPE SOLUTIONS 

Even before a statistical aspect is introduced, there are a number of 
interesting features of  the simple rope solutions that may be nonintuitive. 

1. For L > 0, as the barrier gets infinitesimally thin, i.e., (w + a + b) --> 0, 
it is possible to penetrate the barrier even as E --> 0. At first sight this classical 
result may be surprising and even appear a bit quantum mechanical. It may 
be understood by realizing that as the barrier gets thinner for a fixed length 
of  rope L, the fraction of  the rope's kinetic energy that is converted to 
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potential energy gets correspondingly smaller. In the limit of  an 
infinitesimally thin barrier (a line barrier), this fraction of the rope 's  energy 
goes to zero. Thus the rope can make it over a large but finite barrier of  
height B, even though the rope has an arbitrarily small amount  of  energy. 
This is the same as the quantum limit for an infinitesimally thin barrier of  
finite height as E --> 0, since TT* --> 1. 

2. As in quantum mechanics,  for a finite barrier of  width w > 0, when 
E = 0, classical high jumping cannot clear the barrier. However, E can get 
indefinitely small (but not =0) in successfully clearing the barrier as L--> oe 
(holding the total charge, mass, etc., fixed as would be the case for a 
fundamental  particle). The reason is similar to that of  feature 1, because 
the fraction of  the rope 's  energy that is potential energy ~ 0  as L--> co. For 
quantum tunneling, whenever w > 0, TT* ~ 0 as E ~ 0. 

3. For a point body of L = 0, E >- B to clear the barrier. However,  the 
limit of  L ~  0 approaching a point body has unexpected solutions. With 
w = 0, as (a + b) ~ 0, equation (7) reduces to B(1 - f / 2 )  in the limit as L ~  0, 
where f = L / ( a + b )  and 0 -< f -< l .  This yields B/2<-E<-B. For f - > l ,  
equation (8) reduces to E = B/2f,  yielding 0 < - E <-B/2. With a + b  = 0  as 
w ~ 0 ,  equation (6) or (7) gives E = B for L <  w. However,  for w / L < - g <  1, 
equation (8) reduces to E = gB and thus 0 < E < B. 

A P P E N D I X  B. S Y M M E T R Y  A N D  A S Y M M E T R Y  OF 
Q U A N T U M  T U N N E L I N G  

Establishing some general properties of  quantum mechanical tunneling 
facilitates a comparison with the classical high-jumping results. Consider 
a general one-dimensional barrier of  potential energy V(x)  between :'~,vc~ 
regions of  zero potential. We have the following solutions of  the SchrSdingcr 
equation (S-eq.) on the incident (Region 1) and transmitted sb:%'~ (Region 
2) of  the barrier. 

Region 1: 

~ ( x )  = e ~k~ + n e -'k~ (B1) 

Region 2: 

�9 (x )  = r e  'kx (B2)  

where k is the wave vector, RR* is the reflection coefficient, and TT* is 
the transmission coefficient. For a wave incident on the barrier in the 
opposite direction, O(x)= ~ ( - x )  is the solution of the S-eq. with V ( ' x )  
replacing V(x). The solutions in regions 1 and 2 are as follows. 

Region 1: 

tO(x) = Te -ikX = ~ ( - x )  (B3) 
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Region 2: 

~b(x) = e -~k~ + R e ikx = xt'r(--X) (B4) 

For a nonabsorbing barrier, V is real. Therefore a solution of the S-eq. 
with V ( x )  is 

. ( x )  = [ - R * /  T*]q,(x) + [1/r*]0*(x) (~5) 

where, for Region 1 

XF( x ) = eikX + [ - R *  T /  T*] e -ik:" (B6) 

and for Region 2 

~ ( x )  = [ ( 1 - R R * ) / T * ]  e 'kx= r e  'kx (B7) 

Therefore the transmission amplitude T and the phase are the same 
in the two directions, i.e., quantum mechanical tunneling is symmetric with 
respect to direction. Although the reflection amplitude R2 in Region 2 has 
the same magnitude R as in Region 1, R2 = - R * T / T * =  ]R[, it does not in 
general have the same phase. 

APPENDIX C. DISCUSSION OF CLASSICAL PENETRATION 

Our concept of particles as extended objects having lengths distributed 
about the de Broglie wavelength warrants consideration with respect to 
descriptions of particles as "waves and particles simultaneously," compared 
with complementarity. The ~tirect statistical nature of barrier penetration 
in our model warrants further study and reflection with respect to the 
possibility of directly detecting de Broglie waves (Garuccio et al., 1981). In 
fact, the length scale corresponding to the de Broglie length (;~ here) may 
be inferred from the distribution of rope lengths as related to the high- 
jumping energy. This is analogous to the relationship between the Bohr 
radius and the energy levels of the Bohr model of the atom, where the Bohr 
radius is equal to A for the ground state of a hydrogenic atom. 

At the very least, classical high jumping can provide a physical insight 
into quantum tunneling. This may have value in the sense that if Bohr had 
created the Bohr model of th'~ atom after atomic energy levels had already 
been calculated from the Schr6dirrger equation, his model would still 
provide valuable insights into v~hat would otherwise be an abstract mathe- 
matical process. 

One difficulty of the classical rope analysis is that it is discontinuous 
at E = B, requiring all particles to penetrate for E > B. However, the quan- 
tum result is continuous at E =B,  With partial reflection for E > B. The 
formalextension of equation (12) into the region E > B does approximate 
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the general trend of the quantum solution, though it does not contain its 
oscillatory character. A more complete analysis should consider the com- 
bined effects of  varying rope lengths and internal energy conversion. The 
latter could result when the leading edge of the rope is incident on the 
barrier and kinetic energy of translation would couple to internal energy, 
and thus account for reflection when E - B. In the one-dimensional case, 
the internal energy can only be oscillational. In two or more dimensions, 
the internal energy could also be rotational. 

When quantum mechanics deals with an extended body with distributed 
mass, the additional terms in the Hamiltonian related to the potentially new 
degrees of freedom such as oscillation and rotation about the center of 
mass are represented in the Schr6dinger equation. Even if they were to be 
included, it is not clear that their contribution would materially affect the 
solution. For example, for objects such as an electron, rotational excited 
states require a high energy input for excitation. Hence they are not present 
under ordinary circumstances. A barrier only appears immutable when a 
model is constructed of a point particle interacting with a given barrier. 
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